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A B S T R A C T

Convolution equations are used to relate the input and the output of a system such as rainfall and runoff,
or inflow and outflow of a river reach. There have been numerous reports of unsatisfactory results from the
deconvolution necessary to calculate the connecting transfer function. The cause is that the equations are
ill-conditioned, and it is shown here that the fundamental theoretical solution is that of wild oscillations such
as has often been found computationally. A spectral method is proposed for numerical solution, where, instead
of individual point values, the transfer function is expressed as series of given continuous functions, where
the problem is to determine the coefficients of those functions. The resulting equations have been found to
be well-conditioned, and solutions obtained were smooth, bounded, and enabled a certain amount of physical
interpretation of the transfer function. The method has been applied to several problems, including typical
rainfall–runoff ones and flood routing and wave propagation problems, with quite satisfactory results. Another
problem for deconvolution is found to be the traditional use of truncated equations. A remedy is only to use
later output data points where convolution with input data does not reach back beyond the initial one. For
the routing of larger flood events, the linear methods employed were found to be not so accurate. However
as they are a first approximation that requires no knowledge of stream geometry or resistance, and as either
discharge or water level hydrographs can be used, they may be useful.
1. Introduction

In many rainfall–runoff and flood routing problems little is known
about the physical nature of the catchment, the stream or streams,
their geometry or their resistance. However, if one knows input and
output time series, systems techniques can be used to model even a
complicated river system. One of the pillars of elementary hydrology
has been the use of such linear systems theory, with an input, usually
rainfall, and an output, river flow at a station, the two connected by a
unit hydrograph, such that the output is expressed as a convolution,
a weighted sum of preceding values of the input. Here throughout
we use the term ‘‘unit hydrograph’’ not in the sense where a finite
period of input is considered, but a single spike of input, elsewhere
known as the ‘‘instantaneous unit hydrograph’’. With this, variations of
rainfall during the course of the storm can be considered without some
of the laborious considerations for a finite duration. Also here we do
not concern ourselves with details of preliminary operations such as
subtraction of base flow.

The fundamental assumptions are those of time invariance, where
the parameters of the model do not change with time, and linearity such
that all contributions can be combined additively. Dooge (1973, p18)
wrote ‘‘in hydrology, the assumptions of linearity and time-invariance
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are not valid, but nevertheless have been used for a long time in applied
hydrology because of the simplification they introduce’’.

The first problem in an application is usually that of deconvolution,
determining the sequence of values of the transfer function, from given
input and output data. After that it can then be used with other
inputs to determine the corresponding outputs. The numerical solution,
deconvolution, has always been found to be difficult. The problem of
actually obtaining a unit hydrograph from data has been, to quote
Hamlet, ‘‘more honoured in the breach than the observance’’. It has
often been mentioned, but relatively rarely addressed. When it has, the
results have usually been alluded to darkly as being not so satisfactory.
Even the immense theoretical work of Dooge (1973) contained no
numerical results and little mention of difficulties. The problem has
been blamed on a variety of causes. For example, Chow et al. (1988,
p218) wrote ‘‘the resulting unit hydrograph may show erratic variations
and even have negative values ... [this] may be due to nonlinearity in
the effective rainfall–direct runoff relationship in the watershed, and
even if this relationship is truly linear, the observed data may not
adequately reflect this’’. Zhao et al. (1995) considered more possibil-
ities: ‘‘... one often encounters a situation in which the derived unit
hydrograph exhibits noise fluctuation among its ordinates. This could
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be caused by nonlinearity, time-variance, distributed-space, sampling
intervals for time, numerical instability in computation, measurement
errors, and multicollinearity’’. Other elementary books on hydrology
declare themselves in favour of the method, yet rarely is it actually
described how deconvolution should be performed, or problems alluded
to, or results presented. An exception is Shaw (1994).

There have been attempts to overcome the difficulties by modifi-
cations of the formulations. For example, in the ‘‘Ridge least-squares
method’’ a positive-valued number, called the ridge parameter, is added
to the diagonal elements of the matrix obtained from a least-squares for-
mulation of the convolution equations (Zhao, Tung, and Yang, 1995).
Another approach is that of Yang and Han (2006), transforming the
convolution using Z transforms and then in the resulting complex plane
restricting the nature of singularities.

Problems of deconvolution in the civil engineering application of
the mixing characteristics of urban drainage structures were addressed
by Stovin, Guymer, Chappell, and Hattersley (2010) using Regularisa-
tion, in which a single objective function is constructed under a series of
constraints encapsulating a priori knowledge regarding the function to
be estimated. In subsequent works from the same school, most recently
Sonnenwald, Mark, Stovin, and Guymer (2021), similar sophisticated
techniques were used, including maximum entropy deconvolution. In
other fields where the general problem of deconvolution has been
considered, there exist powerful signal processing software and works
that have used them. Press, Teukolsky, Vetterling, and Flannery (1992,
§13) contains a full discussion plus programs. Deconvolution by Fourier
transform is mentioned as being almost trivial, but the vulnerability
is mentioned if a Fourier component of the input is small, which can
easily happen, as we shall see. There are also warnings: ‘‘... the process
of deconvolution has other practical shortcomings ... generally quite
sensitive to noise in the input data, and to the accuracy to which the
response function is known. Perfectly reasonable attempts at decon-
volution can sometimes produce nonsense for these reasons. In such
cases you may want to make use of the additional process of optimal
filtering ...’’. Such an approach is used in the routine tfestimate in the
mathematical software package Matlab, which involves sectioning the
record and averaging modified periodograms of the sections.

Two current hydrologic software packages can be mentioned; both
avoid systematic deconvolution. The Hydrologic Modeling System of
the US Army Corps of Engineers Hydrologic Engineering Center (HEC-
HMS, 2023), uses synthetic hydrographs and only mentions deconvolu-
tion when the reader is referred to Chow, Maidment, and Mays (1988).
The Revitalised Flood Hydrograph model of the UK Centre for Ecology
and Hydrology (Kjeldsen, 2007) similarly just mentions Chow et al.
(1988), and uses a simple kinked triangular-shaped unit hydrograph
involving a time-to-peak parameter, catchment area and the selected
time step.

The unit hydrograph concept is a strong simplification of the com-
plexity of basin hydrology. Cudennec (2005, p221) notes that ‘‘its
globality does not easily allow accounting for space heterogeneities
and variabilities; it applies only to rapid components of runoff; its
linearity and stationarity can be criticised because actual hydrologic
events are nonlinear; and the claim of describing all transfer processes
within a basin is strong regarding the differences between hillslope
and channel processes’’. That has not stopped the application of linear
systems methods as a first approximation.

For flood routing, where both input and output are measured hydro-
graphs, the concepts underlying the unit hydrograph are rather more
applicable. Sauer (1971, 1973) seems to be the first to have actually
implemented the idea of using convolution for river reaches. He cited
an earlier paper by Dooge and Harley, who wrote ‘‘it is remarkable that
a general linear analysis of the type used in unit hydrograph procedures
has not been applied also to the problem of channel routing’’. In Sauer’s
work, there is no mention of deconvolution. The transfer functions were
obtained by taking a single inflow spike input and routing it down the
2

stream by rather approximate methods. His work was complemented
by that of Keefer and McQuivey (1974) and Keefer (1974, 1976), and
the development of a software package by the US Geological Survey,
described in Doyle, Shearman, Stiltner, and Krug (1984). That body
of work, while using the highly approximate determination of the
transfer function, then included attempts at nonlinear generalisation
and greater accuracy by including different travel times and behaviour
for different magnitudes of input.

Since that body of work some 40–50 years ago, there has been
little mention of the methods and their use in flood routing. Goring
(1984) seems to have been the first in the context of river routing to
have performed deconvolution — and by using Fourier methods, which
make this simpler, however in hydrology there is an extensive literature
on the problems of high-frequency oscillations associated with that
approach.

Now to set the background to the present paper and to describe
what it does. The problems associated with deconvolution seem to
have had a powerful dissuasive effect on its use. In this work it is
suggested that the most fundamental and devastating reason for that
is the ill-conditioning of the equations, when any one equation is very
much like the next. It is shown how a theoretical solution of such
equations is a wildly-oscillating one, which is what the previous numer-
ical works have discovered. Then, conventional analysis methods are
described, including least-squares solution of the convolution equations
and Fourier deconvolution, which have the difficulties described above.
An alternative, a family of spectral methods is suggested here, based on
approximating the transfer function by series of simple mathematical
functions (Fourier, polynomial, and cubic splines), suppressing the
tendency to wild oscillation. When applied, the methods all agreed
closely. For practical problems, good solutions with short series suffice.
If, however, longer series are used, they contain the seeds of their own
destruction, for they ‘‘over-fit’’ the data and tend to the oscillatory
behaviour noted for point-wise methods.

Once the problems of deconvolution have been solved, the use of
transfer functions seems to be robust and flexible. The methods are
also applied here to flood routing, where the input is a hydrograph,
the water level (stage) or discharge at one station as a function of time,
and the output is one at a downstream station. Stage hydrographs are
usually directly and easily measured, and can be used here without the
need to use rating curves at either station to work in terms of discharge.
In any case the water level is often the most important quantity.

For the above-mentioned assumption of time-invariance to apply
there can be no variable control such as gates or valves at the down-
stream station. Otherwise, with a fixed control such as a weir, or
channel control where the stream is flowing freely without impediment,
any backwater effect is included in the underlying physics of the
problem. However, the second major assumption, that of linearity, is
only satisfied in an approximate sense, albeit rather better than in
rainfall–runoff problems.

2. The deconvolution problem

Consider the discrete convolution formulation

𝑂𝑛 =
𝐾
∑

𝑘=0
ℎ𝑘 𝐼𝑛−𝑘, for 𝑛 = 0, 1,… , (1)

giving values of the output sequence 𝑂𝑛 in terms of a weighted sum
of the current and preceding values of the input sequence 𝐼𝑛, 𝐼𝑛−1, ….
The weights are the ℎ𝑘 where 𝑘 denotes the ‘‘reach-back’’ time level,
constituting the (discrete) transfer function, a finite sequence of values,
(

ℎ𝑘 ∶ 𝑘 = 0,… , 𝐾
)

. It is assumed that both input and output sequences
commence at 𝐼0 and 𝑂0. However in the first 𝐾 terms of the series in
Eq. (1), we need information from 𝐼−𝐾 to 𝐼−1 which we do not have.

There are two common solutions to that problem:
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• One is to assume that all those values are zero, so that we modify
Eq. (1) so as to write, using two different but equivalent notations

𝑂𝑛 =
𝐾
∑

𝑘=0,𝑘⩽𝑛
ℎ𝑘 𝐼𝑛−𝑘 =

min(𝑛,𝐾)
∑

𝑘=0
ℎ𝑘 𝐼𝑛−𝑘, for 𝑛 = 0, 1,… , (2)

the second having as upper limit the minimum of the two num-
bers 𝑛 and 𝐾. One does not evaluate contributions 𝐼𝑛−𝑘 for 𝑘 > 𝑛,
with the implication that all contributions 𝐼𝑚 for 𝑚 < 0 are
zero. So as not to have a finite discontinuity between −1 and 0,
throughout calculations in the present work all input and output
sequences had the initial values subtracted such that 𝐼0 = 𝑂0 = 0
also. This seems to be common practice, where the base flow must
be separated from the stream flow hydrograph in the derivation
of a unit hydrograph and must subsequently be added to the flow
derived using unit hydrograph techniques to obtain total flow.

• Alternatively, if one uses Fourier methods, one can assume that
the 𝐼𝑚, the 𝑂𝑛, and the ℎ𝑘 are all periodic, with the period that
of the data sets 𝑁 so that each data value for 𝑚 < 0 is the same
as that at the corresponding other end of the data 𝑚 ± 𝑁 . That
is a special assumption that is necessary for the convenience of
Fourier deconvolution, as will be seen below, but which has its
effect on results.

Consider the nature of the system of Eqs. (1) or (2) with three
general adjacent terms

𝑂𝑛 = ⋯ℎ𝑛−𝑚𝐼𝑚 + ℎ𝑛−𝑚+1𝐼𝑚−1 + ℎ𝑛−𝑚+2𝐼𝑚−2 +⋯ , (3)

and considering that and the next equation for 𝑂𝑛+1, and writing as a
matrix equation:

⎡

⎢

⎢

⎢

⎢

⎣

… … … … …
… 𝐼𝑚 𝐼𝑚−1 𝐼𝑚−2 …
… 𝐼𝑚+1 𝐼𝑚 𝐼𝑚−1 …
… … … … …

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

…
ℎ𝑛−𝑚
ℎ𝑛−𝑚+1
…

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

…
𝑂𝑛
𝑂𝑛+1
…

⎤

⎥

⎥

⎥

⎥

⎦

. (4)

he two matrix rows are made up of two identical sequences, displaced
y one element, but where the coefficients, the input 𝐼 values, vary
moothly and slowly, so that the rows are so similar to each other, that,
ell-known for such a case, the matrix is ill-conditioned and solutions

an contain large fluctuations.
A simple solution demonstrating such behaviour can be obtained.

onsider just three convolution equations (2) and the three first contri-
utions:

𝑛 = ℎ0𝐼𝑛 + ℎ1𝐼𝑛−1 + ℎ2𝐼𝑛−2 +⋯ (5a)
𝑂𝑛+1 = ℎ0𝐼𝑛+1 + ℎ1𝐼𝑛 + ℎ2𝐼𝑛−1 +⋯ (5b)

𝑂𝑛+2 = ℎ0𝐼𝑛+2 + ℎ1𝐼𝑛+1 + ℎ2𝐼𝑛 +⋯ . (5c)

s a first approximation in the spirit of a Taylor series, we assume
hat locally the inflow and outflow are varying linearly in time and
o they do also in the corresponding sequences, and we write 𝐼𝑛+𝑖 =
0 + 𝑖 𝑎1 +⋯ and 𝑂𝑛+𝑖 = 𝑏0 + 𝑖 𝑏1 +⋯ for 𝑖 = −2,… ,+2, and substitute
nto the three Eqs. (5). We find just two independent equations, with
2 indeterminate, and the surprisingly revealing solutions:

0 = +ℎ2 + terms in 𝑎 and 𝑏 coefficients, (6a)

1 = −2ℎ2 + terms in 𝑎 and 𝑏 coefficients, and (6b)

2 = +ℎ2 , (6c)

howing how the solution for the transfer function seeks to oscillate
ildly in the sense +1, −2, +1 shown — even where the input and
utput sequences are varying smoothly, or not at all!

Generally, there are more points at which the convolution is eval-
ated than there are terms in the transfer function, and the system of
qs. (2) is over-determined, which is just as well, as some equations
uch as the first, 𝐼0ℎ0 = 𝑂0 cannot be solved explicitly, given our
3

ssumptions that 𝐼0 and 𝑂0 are zero. However solving as part of an
ver-determined system it is not such a problem. We note that if we
ad not subtracted to zero, the first equation would give the solution
0 = 𝑂0∕𝐼0, which is a strong and simple statement requiring that finite
alue for ℎ0 just to give initial agreement between the two sequences.
hatever that ℎ0 is, in view of the oscillatory solution in Eqs. (6), it can

e anticipated that ℎ1 is a finite opposite-signed value, which is typical
f what one finds in computations.

In view of the artificiality of the augmentation of zero values 𝐼𝑚 = 0
or 𝑚 < 0 expressed as the truncation of the convolution equations
q. (1) to those of Eq. (2), it will be found not always desirable to
onsider all convolutions from 𝑛 = 0 containing the non-physical values
f zero inflow. We generalise the notation to consider the convolution
quations for points in the interval 𝑛 = [𝑛min, 𝑛max].

Similarly we introduce a generalisation for the domain of 𝑘, giving
he length of the transfer function. The classical convolution starts at
= 0, meaning that the output sequence is computed from values of

he input sequence commencing at that very moment. In problems of
lood routing that we want to consider, it may take some time for the
ffect of a change of input to be experienced as output, as the body of
flood moves downstream. We will consider the possibility of a non-

ero minimum value 𝑘min. Introducing 𝑘max for the maximum value, the
omain of 𝑘 (the extent of possible values) is the interval

[

𝑘min, 𝑘max
]

.
The general expression of the convolution equations can then be

ritten

𝑛 =
min(𝑛,𝑘max)

∑

𝑘=𝑘min

ℎ𝑘 𝐼𝑛−𝑘, for 𝑛 = 𝑛min,… , 𝑛max . (7)

he conventional expression used throughout the literature is to use
his with all output data points, thus setting 𝑛min = 0 (and using
min = 0). This means that the first convolution equation, for example, is
0 = ℎ0𝐼0, with the implication that one has assumed 𝐼𝑚 = 0 for 𝑚 < 0
nd this clearly-inadequate equation, and subsequent ones successively
nvolving more terms, is taken as playing a role in determining ℎ0, ℎ1,
nd so on. It will be demonstrated in examples in the results Section 5
hat this can give poor results. The remedy is only to use convolution
quations starting at a later point that involve only known values of
nput.

. Existing solution methods

.1. Least-squares solution of the point-wise convolution equations

Consider the convolution equations (7) with the general domains in
and 𝑘 written in matrix form

𝐡 = 𝐎 (8)

where I is the (𝑛max − 𝑛min + 1) × (𝑘max − 𝑘min + 1) matrix with elements
𝐼𝑛−𝑘, 𝐡 is a column vector with 𝑘max − 𝑘min + 1 elements ℎ𝑘, and 𝐎 a
column vector with 𝑛max − 𝑛min + 1 elements 𝑂𝑛.

The usual procedure for deconvolution has been to obtain a least-
quares solution.of Eq. (8). Press et al. (1992, §15.4) present the
ethod and program for a Singular Value Decomposition solution that

an be used. Alternatively one can solve the over-determined system
sing optimisation methods, minimising the sum of squares of the
rrors in all the convolution equations. The common method that can
e used is that described, for example, in Chow et al. (1988, §7.6)
nd Shaw (1994, §13.4.2). The procedure is to pre-multiply both sides
y the transpose I⊺, giving
⊺I𝐡 = I⊺𝐎, (9)

giving a square (𝑘max−𝑘min+1)×(𝑘max−𝑘min+1) matrix pre-multiplying
the vector of unknowns, and on the right a (𝑘max − 𝑘min + 1) vec-
tor. The equation can be solved by common software. However, the
ill-conditioning of the coefficient matrix often gives irregular highly
oscillatory solutions for the transfer function, referred to throughout

the literature, and shown in Section 2 above here.
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3.2. Fourier deconvolution

One method of deconvolution using Discrete Fourier Transforms
(DFT) was introduced by O’Donnell in 1960. Because Fourier series are
orthogonal under summation, taking the DFT of a convolution gives a
simple product in Fourier coefficient space, so that transforming input
and output gives an algebraic expression for the Fourier coefficients of
the transfer function, which can then be inverted to give the values of
the function itself. Naturally, the linearity of the system means that no
new frequency components are generated. In principle, the method is
simple and powerful. In application it is quite vulnerable. The theory
is given here, as some notational matters are novel to this field.

As Fourier series are being used, the implication is that each of the
quantities, the input and output sequences and the transfer function,
are all of equal length 𝑁 , numbered 0 to 𝑁 − 1, and are periodic. First

e define the DFT and its inverse.

iscrete Fourier transform. Consider a sequence 𝑓𝑛, for 𝑛 = 0, 1,… , 𝑁 −
1. The transform of such a sequence is denoted by 𝐹𝑗 =  (𝑓, 𝑗):

𝐹𝑗 =
1
𝑁

𝑁−1
∑

𝑛=0
𝑓𝑛 exp (−i2𝜋𝑗𝑛∕𝑁)

= 1
𝑁

𝑁−1
∑

𝑛=0
𝑓𝑛 𝑊

−𝑗𝑛, for 𝑗 = −𝑁∕2,… ,+𝑁∕2, (10)

where 𝑊 = exp (i2𝜋∕𝑁), the fundamental 𝑁th root of unity, and where
i =

√

−1. This form contains two conventions: first, the transform
contains the factor 1∕𝑁 such that the Fourier coefficients 𝐹𝑗 have a
imilar magnitude to the 𝑓𝑛 (for example, 𝐹0 is actually the mean of the
𝑓𝑛 sequence). Secondly, this version has minus signs in the exponential
terms. The reason will shortly be explained.

Inverse discrete Fourier transform. This is defined to be 𝑓𝑛 = −1 (𝐹 , 𝑛):

𝑛 =
𝑁∕2
∑′′

𝑗=−𝑁∕2
𝐹𝑗 exp (+i2𝜋𝑗𝑛∕𝑁) =

𝑁∕2
∑′′

𝑗=−𝑁∕2
𝐹𝑗 𝑊

+𝑗𝑛 , for 𝑛 = 0,… , 𝑁 − 1,

(11)

here the range of 𝑗 is the symmetric one, 𝑗 = −𝑁∕2,… ,+𝑁∕2 rather
han from 0 to 𝑁 −1. The notation 𝛴′′ means that contributions to the

sum at the ends, 𝑗 = ±𝑁∕2, are to be multiplied by 1∕2. The positive
exponent in this inverse, Eq. (11), is such that the interpolating Fourier
series of the 𝑓𝑛 sequence, using 𝑡 as the continuous variable, with a
period 𝑇 , also contains a positive sign

𝑓 (𝑡) =
𝑁∕2
∑′′

𝑗=−𝑁∕2
𝐹𝑗 exp (+i2𝜋𝑗𝑡∕𝑇 ) , (12)

as are the series for the derivatives of this interpolating function
without any extra minus signs. A happy circumstance is that if the series
in Eq. (12) is evaluated from 𝑗 = −𝐽 ,… ,+𝐽 , where some 𝐽 < 𝑁∕2, it
is the corresponding least squares approximation to the 𝑓𝑛 sequence.

Convolution theorem for periodic sequences. Now returning to convolu-
tion matters, consider where the 𝐼 , 𝑂, and ℎ sequences are all periodic,
each with 𝑁 terms, 0,… , 𝑁−1. In this case the general convolution Eq.
(1) can be simplified, not by truncation as was done to give Eq. (2), but
one can now include terms 𝐼𝑛−𝑘 for 𝑛−𝑘 < 0 and it can be written simply

𝑛 =
𝑁−1
∑

𝑘=0
ℎ𝑘 𝐼𝑛−𝑘, for 𝑛 = 0, 1,… , 𝑁 − 1. (13)

aking the DFT of that convolution, from Eq. (10),

(𝑂, 𝑗) = 1
𝑁

𝑁−1
∑

𝑛=0

(𝑁−1
∑

𝑘=0
ℎ
𝑘
𝐼
𝑛−𝑘

)

𝑊 −𝑗𝑛 =
𝑁−1
∑

𝑘=0
ℎ
𝑘

(

1
𝑁

𝑁−1
∑

𝑛=0
𝐼
𝑛−𝑘

𝑊 −𝑗𝑛

)

,

(14)
4

t

here the order of summation has been changed. Multiplying by a term
−𝑗𝑘 inside the first (outer) summation and by the inverse of that 𝑊 +𝑗𝑘

nside the next (inner) summation,

(𝑂, 𝑗) =
𝑁−1
∑

𝑘=0
ℎ
𝑘
𝑊 −𝑗𝑘

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑁 (ℎ,𝑗)

(

1
𝑁

𝑁−1
∑

𝑛=0
𝐼
𝑛−𝑘

𝑊 −𝑗(𝑛−𝑘)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝐼,𝑗)

, (15)

where the inner sum of a function of 𝑛 − 𝑘 over 𝑛 just means taking
all the 𝑁 values irrespective of 𝑘 because of periodicity, so it is simply
the DFT of 𝐼 . The result is that the DFT of the convolution is a simple
product of Fourier terms

 (𝑂, 𝑗) = 𝑁  (ℎ, 𝑗)  (𝐼, 𝑗) . (16)

This gives an explicit solution for the 𝑗th term of the transform of the
transfer function in terms of transforms of input and output:

 (ℎ, 𝑗) = 𝐻𝑗 =
1
𝑁

 (𝑂, 𝑗)
 (𝐼, 𝑗)

. (17)

The 1∕𝑁 factor has entered here because of the inclusion of 1∕𝑁 in
the present definition of the transform, Eq. (10). Goring (1984) used a
different definition without the extra factor.

The transfer function itself is then given by the inverse DFT ℎ𝑘 =
−1 ( (ℎ, 𝑗) , 𝑘). It can now be used with other input sequences to
determine the corresponding outputs. Of course, the DFTs and inverses
can be conveniently obtained using Fast Fourier Transform software.

In practice the behaviour of solutions can be very erratic. Consider-
ing the denominator of Eq. (17),  (𝐼, 𝑗) for 𝑗 = −𝑁∕2,… ,+𝑁∕2, small
values can be encountered, somewhat randomly, giving large values of
the 𝐻𝑗 with unreasonably large contributions at that frequency, and
highly oscillatory solutions for the ℎ𝑘. As values of  (𝐼, 𝑗) depend
crucially on the data, any irregularities can lead to greatly different
results. In the present work, for the more idealised examples presented
further below, it was found that the solutions were sufficiently oscil-
latory that this method of Fourier deconvolution could not be used.
However, Goring (1984) obtained satisfactory solutions for several
Aotearoa New Zealand rivers, noting that the Fourier spectrum decayed
sufficiently quickly that one could ignore components above a certain
frequency.

3.3. Solving convolution equations by optimisation

A recent paper by the author Fenton (2023) proposed a different
deconvolution method, formulating the solution of the convolution
equations as an optimisation problem. A generalisation was that there
could be a number of different inputs, the general convolution Eq.
(7) written as a sum over 𝐽 different tributary contributions and here
written as equation 𝑒𝑛, the value of which the solution method should
try to minimise:

𝑒𝑛 = 𝑂𝑛 −
𝐽
∑

𝑗=1

min(𝑛,𝑘max,𝑗 )
∑

𝑘=𝑘min

ℎ𝑗,𝑘 𝐼𝑗,𝑛−𝑘 , for 𝑛 = 𝑛min,… , 𝑛max . (18)

where ℎ𝑗,𝑘, 𝐼𝑗,𝑛−𝑘, and 𝑘max,𝑗 are simple generalisations of the ℎ𝑘, 𝐼𝑛−𝑘,
nd 𝑘max used above. The programming and solution of such a system,
uch that the sum of all the 𝑒2𝑛 is minimised, was relatively simple
sing optimisation software. This was used in a study of flows in a
omplex set of interconnections in the Broken River valley in south-
astern Australia. This was from an era and situation where readings
ere only taken daily. The transfer functions were then all very short,

ypically just three values, corresponding to zero, one and two days
elay before upstream input appeared as output at the downstream
tation. The method worked well for the problem described, where
uestions of oscillatory long-term transfer functions did not occur.

The author also applied the optimisation solution method to some of
he single-input problems described below in Section 5. He discovered,

o his naive surprise, that the results were exactly the same as those of



Journal of Hydrology 634 (2024) 131034J.D. Fenton

a
p
l
i
p
s
o
c

4

4

f
n
a
c
v
l
a
t
b
𝜃
𝑘

ℎ

s

a
a
3
f

ℎ

w
c
a

4

a
p
w
s
r
p

w
a
s

𝑂

T
b

the least-squares method for solution of the convolution equations de-
scribed above in Section 3.1, with the attendant problems of oscillatory
transfer functions. It was the realisation of that which led the author
then to develop the family of methods described in the next section.

However, the optimisation approach described here could still have
certain applications where transfer functions are short-run. A possibility
is that it would allow the use of nonlinear formulations. Setting up of
a problem is relatively simple, and optimisation software robust.

4. Deconvolution methods using approximation by spectral meth-
ods

Here, a different approach to deconvolution will be considered.
Rather than sophisticated signal-processing methods being applied to
the original formulation, the problem is recast using spectral methods.
Instead of the transfer function ℎ𝑘 being composed of a number of
different point values, each obtained from solution of the ‘‘point-wise’’
equations as described above, the values of ℎ𝑘 are approximated by

series of given continuous functions of the index 𝑘 and where the
roblem now is to determine the coefficients of those functions by
east-squares methods, where the approximating series is used with
nteger 𝑘 in convolution expressions. The subsequent success of this ap-
roach was because it is one of approximation with low-order relatively
mooth functions, not attempting to describe the natural tendency to
scillation discovered in Section 2. Three families of functions of 𝑘 are
onsidered.

.1. Approximating functions

.1.1. Fourier series
The functions considered here were almost the same as those used

or Fourier convolution in Section 3.2, but here using shorter series and
ot using complex notation. For our purposes, to be able to approximate
ny finite variation of ℎ(𝑘) the form of the Fourier series is not quite
omplete. The constant 𝑗 = 0 term, 𝐹0 in Eq. (12), which is the mean
alue of the 𝑓𝑛 sequence in that case, needs to be augmented by a
inear term. This corresponds to the well-known procedure in Fourier
nalysis of subtraction of a linear trend line from a signal, so that
he implied periodicity does not cause a discontinuity between the
eginning and end of the signal. We introduce a scaled 𝑘-like variable
𝑘 = 2𝜋

(

𝑘 − 𝑘min
)

∕
(

𝑘max − 𝑘min
)

varying from 0 to 2𝜋 as 𝑘 goes from
min to 𝑘max so that we write

𝑘 = ℎ(𝑘) = 𝑎0 + 𝑏0𝜃𝑘 +
𝑀
∑

𝑚=1

(

𝑎𝑚 cos𝑚𝜃𝑘 + 𝑏𝑚 sin𝑚𝜃𝑘
)

, (19)

The problem is to determine the 𝑎𝑚 and 𝑏𝑚 for 𝑚 = 0, 1, 2,….

4.1.2. Polynomial series
To represent the ℎ(𝑘) an obvious alternative possibility would be

simply a polynomial made up of monomial terms such as

ℎ𝑘 = ℎ(𝑘) =
𝑀
∑

𝑚=0
𝑐𝑚

(

𝑘 − 𝑘min
)𝑚 , (20)

where 𝑐𝑚 for 𝑚 = 0,… ,𝑀 are the coefficients to be determined, 𝑀
is the degree of the polynomial, and we represent variation with 𝑘
as the monomial quantity

(

𝑘 − 𝑘min
)𝑚. There are two problems with

this. As 𝑘 is an integer quantity,
(

𝑘 − 𝑘min
)𝑚 can become very large,

the coefficients 𝑐𝑚 would have to become very small and the solution
process might be more demanding. The second difficulty is that the
set of monomials all look the same (consider, starting at 𝑥 = 0, the
monomials 𝑥2, 𝑥3, 𝑥4, …). The author, Fenton (2018), in a study of
the rating curves at measurement stations for discharge as a function
of stage, considered such polynomial approximation at some length,
theoretically and computationally. He concluded that if one has to
5

approximate data with arbitrary variation, it is better to use series of C
Chebyshev polynomials. In a similar manner to terms in Fourier series,
each has different behaviour, enabling a more efficient form of approx-
imation and with the ability to represent more general non-periodic
behaviour.

Consider the series of Chebyshev polynomials of the first kind
𝑇𝑚 (see, for example, Abramowitz and Stegun, 1965, §22) written

ℎ𝑘 = ℎ(𝑘) =
𝑀
∑

𝑚=0
𝑐𝑚𝑇𝑚

(

𝜅𝑘
)

, (21)

where 𝜅𝑘 is the scaled 𝑘-like quantity

𝜅𝑘 = 2
𝑘 − 𝑘min

𝑘max − 𝑘min
− 1, (22)

uch that the domain of 𝜅𝑘 (the range of validity) is from −1 to +1 as
𝑘 varies from 𝑘min to 𝑘max. In fact (Abramowitz and Stegun, 1965, eqn
22.3.15) the Chebyshev polynomials are simply evaluated and thought
of as

𝑇𝑚
(

𝜅𝑘
)

= cos
(

𝑚 arccos 𝜅𝑘
)

. (23)

The behaviour of the polynomials can be seen in Abramowitz and
Stegun (1965, fig 22.6), or Fenton (2018, fig 2) where comparison with
monomials is made. For small 𝑚 they look like simple polynomials:
𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 2𝑥2−1; for increasing 𝑚 they oscillate ever
more rapidly between ±1, resembling higher terms in Fourier series,
with the same ability as them to approximate general behaviour, but
without any implied periodicity.

4.1.3. Approximating splines
The Fourier and Chebyshev polynomial series are both global ap-

proximations, valid over the whole interval. Problems of such are
well-known: if behaviour anywhere is too rapid, there is a general
loss of accuracy. Given the possible irregular behaviour of transfer
functions, ℎ(𝑘) as a function of 𝑘, an alternative is to use piecewise
continuous approximation in the form of cubic splines such as applied
by Fenton (2018) as a second method for describing rating curves. The
domain of 𝑘 is divided into a small finite number of sub-intervals, and

different cubic polynomial applies in each of them. The ℎ(𝑘) are to be
pproximated over each interval by a polynomial of low degree 𝑀 = 2,
, or more. So, over each of the intervals 𝑗, ℎ is approximated as a
unction of a continuous 𝑘 by a different function

𝑗 (𝑘) =
𝑀
∑

𝑚=0
𝑐𝑗,𝑚

(

𝑘 − 𝑘𝑗
)𝑚 . (24)

here 𝑘𝑗 is the value at the beginning of interval 𝑗. Certain continuity
onditions are applied such that the function and derivatives up to 𝑀−1
gree on both sides of the internal knot points separating the intervals.

.2. Choice and implementation of polynomial approximation

Each of the formulations, Fourier series, polynomial series, and
pproximating splines, were tested in detail using all the example
roblems presented below in Section 5. It was found that all worked
ell. The three formulations agreed sufficiently closely, that it is con-

idered necessary here only to present details and results for one and
ecommend that for use: the polynomial series are the simplest to
resent, and gave the best results, by a narrow margin.

In general we evaluate the convolutions from 𝑛 = 𝑛min to 𝑛 = 𝑛max;
e may not want to evaluate a convolution which requires truncation
t 𝑛 = 0, involving artificial zeroes. The system of Eqs. (7) becomes,
ubstituting Eq. (21) and interchanging orders of summation

𝑛 =
𝑀
∑

𝑚=0
𝑐𝑚

(min(𝑛,𝑘max)
∑

𝑘=𝑘min

𝑇𝑚
(

𝜅𝑘
)

𝐼𝑛−𝑘

)

, for 𝑛 = 𝑛min,… , 𝑛max . (25)

he problem is now to solve for the 𝑐𝑚, 𝑚 = 0,… ,𝑀 . The system can
e written

𝐜 = 𝐎, (26)



Journal of Hydrology 634 (2024) 131034J.D. Fenton
where C is a
(

𝑛max − 𝑛min + 1
)

× (𝑀 + 1) matrix, with elements

C𝑛𝑚 =
min(𝑛,𝑘max)

∑

𝑘=𝑘min

𝑇𝑚
(

𝜅𝑘
)

𝐼𝑛−𝑘 , (27)

where 𝑛 runs from 𝑛min to 𝑛max and 𝑚 from 0 to 𝑀 (taking liberties here
with conventional matrix element numbering); 𝐜 is a column vector
with elements 𝑐𝑚, 𝑚 = 0,… ,𝑀 and 𝐎 a column vector with elements
𝑂𝑛, 𝑛 = 𝑛min,… , 𝑛max. Whereas in the Fourier series the orthogonality
under summation of the exponential functions meant that it was pos-
sible to obtain an explicit solution, the Chebyshev polynomials have
different orthogonality properties, as shown for the continuous forms
in Abramowitz and Stegun (1965, §§22.1&2). Here no such simplicity
seems possible, or even desirable in view of the behaviour of the
explicit Fourier coefficients. What is most useful is that the polynomials
are all different, enabling more general representation. For solution
it is necessary to use linear algebra software, as throughout all the
approximation methods here.

Eq. (26) can be solved in a least-squares sense by Singular Value
Decomposition, such as the program of Press et al. (1992, §15.4). More
common software for square matrix problems can be implemented by
pre-multiplying both sides of Eq. (26) by the transpose C⊺, similar to
that done to give Eq. (9), with the result

C⊺C 𝐜 = C⊺𝐎, (28)

with a relatively small well-conditioned square (𝑀 + 1)×(𝑀 + 1) matrix
pre-multiplying the 𝑀+1 vector of unknowns, and on the right an 𝑀+1
vector.

In the testing described below with finite small values of 𝑀 = 6
to 16, the matrix C did not suffer from ill-conditioning; results for
the transfer function ℎ(𝑘) were smooth, accurate, and showed some
physical significance (such as an obvious maximum corresponding to
the separation distance between peaks of inflow and outflow). For
larger 𝑀 values however, the solution became more oscillatory. As
the series contained more rapidly-oscillating functions the method
began to look more like the traditional point-wise convolution form.
This is evidence of what is called over-fitting in statistics, where an
approximating method is allowed too much freedom to agree with data.
It seems that the satisfactory smooth results obtained for low levels of
approximation are to be preferred, but a certain amount of judgement
is necessary.

5. Examples

In the various examples to be considered, all four of the main
methods mentioned above were applied, using the point-wise convo-
lution equations in Section 3.1 plus the three spectral formulations,
Section 4.1.

5.1. A rainfall–runoff problem

Shaw (1994, figure 13.11) gave a typical example of the problems
presented in elementary hydrology textbooks with rainfall and cor-
responding runoff. For this work the figure was digitised, with 106
equally-spaced values for rainfall and runoff with time interval 𝛥𝑡 =
0.45 h and is shown in Fig. 1. The figure reveals a feature of the present
approach, that we are trying to develop methods that can handle any
data sequence. The rainfall data in blocks of constant duration in the
original, suited to methods that purport to handle input data of a
given duration, is here represented as a continuous sequence of values
at intervals rather smaller than the block duration. The values are
constant in a particular block, but with the methods advocated here,
considering only instantaneous unit hydrographs, they could have any
variation.

The various deconvolution methods described above were applied,
using a transfer function with 𝑛 = 0 and the maximum length of
6

min
the transfer function 𝑘max𝛥𝑡 ≈ 30 h, and with the levels of numerical
approximation shown in part (b) of the figure. It can be seen in part (a)
that all four methods, including the traditional point-wise approach de-
scribed in Section 3.1, gave results for the computed outflow, obtained
as part of the solution from the computed transfer function, which seem
quite satisfactory. In fact, an attempt was made to separate the data
into two, corresponding to the two main rainfall events, to give one set
for determination of the unit hydrograph and another for validation,
to test the results, however there was too much overlap between the
events and no sensible results were obtained. Part (b) of the figure
shows the main results of interest here, those of the transfer function
ℎ𝑘, now using different line types. The point-wise approach has led to
finite oscillations, while the spectral methods gave smooth functions
that could be used confidently with other input data.

5.2. A more complex rainfall–runoff problem with an important result

Kjeldsen (2007, figure 6.5) presented data for a ‘‘notable event’’
peaking on 26 January 2000 at Lennoxlove, east of Edinburgh in
Scotland. The digitised data with 95 points in time are shown here
in Fig. 2; the rainfall amounts, measured hourly, are quite irregular.
Unlike as was done here for Fig. 1 each block was represented by a
single rainfall value at its centre.

The figure also shows the computational results obtained here with
a total transfer function length of 𝑘max𝛥𝑡 = 2 d. Just results using
polynomial approximation are shown. Performing the calculations re-
vealed something important that the simpler problem of Fig. 1 did not.
Initially the traditional approach was taken with 𝑛min = 0 (and 𝑘min =
0), meaning that from Eq. (2), the first equation used is 𝑂0 = ℎ0𝐼0
and so on. It is well-known that the first points of any conventional
convolution are unreliable, as these truncated short-run contributions
contain insufficient information with the implication of the artificial
zeroes 𝐼𝑚 = 0 for 𝑚 < 0. Fig. 2(a) with the highly variable input values
shows that the results for the computed outflow as part of the solution,
shown by small points, were unexpectedly poor: highly irregular and
often far from the actual outflow data.

If one then assumes that only convolution equations should be
included that contain actual input values 𝐼𝑚, 𝑚 ⩾ 0, then the solution
process should not start before a point 𝑛min = 𝑘max such that the initial
convolution equation does not reach back before 0. For example, taking
the usual case 𝑘min = 0, such that the convolution includes input
contributions right up to the point considered, the first convolution
equation is then 𝑂𝑛min

= ℎ𝑘max
𝐼0 +⋯+ ℎ0𝐼𝑘max

. More generally for non-
zero 𝑘min, the convolution equations are then, substituting 𝑛min = 𝑘max
into Eq. (7), the minimum value of (𝑛, 𝑘max) becomes just 𝑘max, giving:

𝑂𝑛 =
𝑘max
∑

𝑘=𝑘min

ℎ𝑘 𝐼𝑛−𝑘, for 𝑛 = 𝑘max,… , 𝑛max , (29)

such that we consider all input data values 𝐼𝑚 from 𝑚 = 0 but no
equations or output data values for 𝑛 < 𝑛min = 𝑘max.

The results using this are shown by the solid lines on Fig. 2(a),
where using the spectral approach (with 𝑀 = 16 for both polynomial
and Fourier methods, and with 16 intervals for splines) good agreement
with data was obtained. It does not matter that we do not plot results
for times such that 𝑛 < 𝑛min = 𝑘max, we are not predicting, we are
merely showing results that are part of the solution process, to be able
to evaluate its accuracy.

The usefulness of what has been done is reflected in part (b) of
the figure, showing how the truncated convolutions, starting at 𝑛 = 0
gave very different results for the transfer function from those using the
procedure suggested here using convolution equations only for points
𝑛 ⩾ 𝑘 .
max
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Fig. 1. A rainfall–runoff problem (Shaw, 1994, figure 13.11).
Fig. 2. Irregular rainfall data with a storm hydrograph.
Source: Taken from Kjeldsen (2007, figure 6.5).
F
4
(

5.3. A flood routing problem

The next example considered is a flood routing one, with flow
at two stations on the Wye River, Erwood in Wales and Belmont in
England, given in Flood Studies Report (1975, figure 3.6). The figure
was digitised, with 74 equally-spaced interpolated values for inflow and
7

a

outflow with time interval 𝛥𝑡 = 1.6 h. The various methods described
above were applied. The total length of the transfer function was 2.5 d.
or the spectral methods, parameters were 𝑀 = 8 for polynomials, 𝑀 =
for Fourier, with 6 spline intervals. Results are shown in Fig. 3. Part

a) shows the overall problem with data plus computed results obtained
s part of the system identification. All methods – point-wise and the
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Fig. 3. A flood routing problem on the River Wye.
hree spectral ones – give very similar results for the outflow computed
s part of the solution. The thickened line is actually made up of six,
hree different spectral methods for two different values of 𝑘min. Results

were relatively insensitive to the number of terms in the approximating
functions. What was more important for system identification was what
points were considered for convolution and what was the length of the
transfer function. There were three different cases considered, with the
results for ℎ𝑘 being shown in figure parts (b) to (d).

cheme in Fig. 3(b), 𝑛min = 0, 𝑘min = 0. This is the conventional
method using all convolution equations from 𝑛 = 0. In Section 5.2
with an irregular input it was found to give poor results. Here with
smoother input the problems are fewer, but Fig. 3(a) shows how it
still takes some time for a convolution to be accurate, to incorporate all
the values in the transfer function — initially the solution is horizontal
due to the dominance of the phantom zero data points before 𝑛 = 0.
Gradually agreement with measured outflow is better until after point
𝑛 = 𝑘max at a time of about 9.8 d, agreement with outflow data and
all other computational results, obscured by lines from other results, is
very good.

The important result for this work is, however, contained in the
next part (b) of the figure, showing the computed transfer functions.
The traditional point-wise least squares approach (Section 3.1) gave
wild oscillations of ℎ𝑘 between large positive and negative values, as
foreseen in the mathematical solution of Eqs. (6). The spectral approach
adopted here (Section 4) has performed well, with smooth bounded
variation, such that the results could confidently be combined with
other input flood hydrographs to compute outputs. The results show
a maximum in ℎ𝑘 at about 0.7 d, corresponding to the separation of the
flood peaks in part (a), and with lesser maxima that we can interpret
as harmonics of the dominant wave. What is less easily explicable is
the increase of ℎ𝑘 as 𝑘 → 0, but we have already seen above that
the behaviour of the transfer function is not obvious, such as when we
8

showed the fundamental oscillating solution in Eqs. (6).
Scheme in Fig. 3(c), 𝑛min = 𝑘max, 𝑘min = 0. The next part shows results
obtained by only evaluating convolution equations where the whole
transfer function plays a role, 𝑛 ≥ 𝑘max, such that every convolution
point uses all the terms in the transfer function, as was done in Sec-
tion 5.2. Oscillations of ℎ𝑘 in (c) are rather larger than in part (b). The
reason is that for the first convolution point at 9.8 d the inflow shows
a massive flood peak which has passed at that moment and the flow
is decreasing quickly, but that is yet to be felt downstream so that the
downstream outflow is increasing. By using the conventional 𝑘min = 0
in our convolutions here, allowing outflow to be immediately partly
determined by inflow, we are saying that the outflow at 9.8 d is being
partly given by the large upstream event, of which, of course, it actually
still knows nothing. The contortions of the transfer function required
to handle this irrationality can be seen in the larger fluctuations of ℎ𝑘
for smaller 𝑘. What is possibly surprising, however, is that the transfer
function can still handle this problem at all, and give the good agree-
ment with outflow data shown by the solid lines for 𝑡 > 9.8 d in part
(a). However, the behaviour shown in part (c) as the anomalous large
oscillation for small 𝑘𝛥𝑡 would have possibly deleterious consequences
if the transfer function were convolved with other data. The oscillations
of the results from the point-wise method were even wilder in this case
where, obviously, they had to work harder.

Scheme in Fig. 3(d), 𝑛min = 𝑘max, 𝑘min𝛥𝑡 = 0.6 d. In flood routing
problems usually there is a finite time for input to appear as an output.
It is expected that the first terms of the transfer function will be zero,
so one can set the time of the first arrival 𝑘min𝛥𝑡 to be a finite number.

Fig. 3(d) shows the results for ℎ𝑘 obtained by inspecting the data
in (a) and choosing 𝑘min𝛥𝑡 = 0.6 d, so that, subtracting from the first
convolution point at 9.8 d on the figure, we have, possibly arbitrarily,
suggested that nothing of the inflow after about 9.2 d has yet reached
the downstream end. Part (d), with this adjustment, now shows the

most physical results of all three ℎ𝑘 figures — there is no sudden
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Fig. 4. Simulation of waves in four reaches on the Chattahoochee River from two sudden flow releases, showing the identification range for 6 ≤ 𝑡 ≤ 30 h, and the testing range
thereafter.
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increase for small 𝑘, and the oscillations of the figure seem to have
a physical basis, that of the delay of the main wave plus harmonics.
Correspondingly, the point-wise results also were less wild in this case.

One last observation however, in view of the three cases studied, is
that the transfer function ℎ𝑘, provided it can be computed reliably, is
a robust means of representation. Throughout, the approach seems to
have worked well despite the difficulties mentioned.

5.4. Comparison with field measurements of hydraulic transients

Faye and Cherry (1980) describe a large-scale experiment per-
formed on a 28 km reach of the Chattahoochee River in the vicinity of

tlanta, Georgia, USA. Collection of stage and discharge data occurred
ntensively over a 3-day period in 1976. Initial flow conditions in the
iver were steady and low. Commencing early in the morning of 22
arch the discharge at the upstream point, a hydro-electric dam, was

ncreased and maintained at that rate for about 20 h before returning to
low flow. On 23 March, a second controlled discharge was released, re-
sembling a typical hydro-power wave or pulse. Measurements of stage
at a number of stations were made continuously, and measurements of
flow were also made, which are not needed here, and neither are other
measurements such as the physical dimensions of the river.

The stage measurements are ideal for testing the methods in this
work. Fig. 4 shows five hydrographs. Here data from 6−30 h were used
to determine the transfer functions, of lengths 8 h, for four successive
reaches. Then, convolutions were used to obtain the stage hydrographs
also for the following 18 h, our verification or testing phase. It was
found here that the traditional truncated convolutions gave the best
results. This might be due to the abrupt almost-discontinuous nature of
the data. The results plotted are those from all deconvolution methods:
point-wise, and the three spectral methods. The results are for the cas-
cade of individual reach combinations, 1–2, 2–3, 3–4, and 4–5 and not,
for example, 1–4. All four methods show close agreement, including the
traditional point-wise approach. However the transfer functions from
the point-wise method were highly oscillatory. Agreement is generally
good, however there is a consistent tendency for the predicted wave to
arrive after the actual one, to travel more slowly. This may be partly
due to the shorter length of the test wave or its magnitude. The question
9

arises: how large were the surges? From the data for hydraulic radius
given in Table 2 of Faye and Cherry (1980) a typical original depth of
approximately 1.5m is found, so that the increase in depth of the first
lug of about 1.8m and the second of about 2.5m were rather more
han the original depth, so they were quite large, those for the testing
hases slightly larger, and hence faster, than those of the identification
hases. They are also shorter, which might have played a role. In the
ext section we consider some more demanding tests of the effects of
onlinearity.

.5. Testing physical accuracy limits

The underlying theory throughout has assumed that the physical
ystem is a linear one. Yet the long wave equations describing the
ropagation of flood waves are nonlinear, including effects such that
igher waves travel faster. The equations also show diffusion and
ispersion (when modelled by linear theory!), where different wave-
ength components travel at different speeds and show different rates
f diminution. The present approach is expected to be able to describe
hat, however.

We consider two different tests, for each of which two simulations
ere conducted, each time introducing an input hydrograph into a
niform channel, and accurately numerically solving the unsteady non-
inear long wave equations by an implicit finite difference method,
o give the hydrograph at output. From that first pair of input and
utput hydrographs we obtained the transfer function using spectral
echniques developed above. Now considering the second pair of hydro-
raphs, with different input, we convolved the transfer function with
he inflow and compared the resulting outflow with that obtained from
he corresponding accurate simulation.

The model river, of infinite width (that does not matter for our pur-
oses), was 100 km long, had a slope of 10−4, with Manning’s 𝑛 = 0.04.
he initial flow per unit width was 𝑞 = 1m2 s−1, with an initial depth
f 2.30m. In each case a flood was introduced at the upstream end and
he governing long wave equations were solved over a six-day period.
he traditional point-wise method and three spectral approximation
ethods were applied: Fourier with 𝑀 = 6, the polynomial series with
= 10, and splines with 12 intervals, giving close agreement with each
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Fig. 5. Results from system identifications for two different combinations of input and output for identification and markedly different input and output for testing.
other. Only the polynomial spectral results are shown in Fig. 5. It is
noteworthy that in these problems, the traditional point-wise approach
failed badly, giving highly-oscillatory results for the transfer function
ℎ𝑘, similar to those shown in Fig. 3(b)–(d). The reason here may
aradoxically have to do with the fact that the hydrograph data show
mooth behaviour, when the convolution equations are all similar and
ence poorly-conditioned.

The first test was that of the effects of nonlinearity on the accuracy
f the linear methods. In the first calibrating case a smoothly-varying
lood was introduced with a peak discharge after 1 d of three times
he initial flow. The maximum water depth upstream was about 4m,
bout twice the initial. Then, for the testing case, a larger flood with a
aximum of six times the initial flow was introduced, with a maximum
pstream depth of about 6m, three times the initial.

Both discharge and water level formulations were tested, using data
rom the same flood event. Results using discharge with a rather larger
ariation are shown in Fig. 5(a), and show that the magnitude of the
ownstream flood wave was calculated accurately, but its peak arrived
ater than that obtained from the accurate simulations, showing that the
igher test wave did travel faster than the smaller calibration wave.
art (b) of the figure using surface elevation, plotted as depth show
arkedly the surprising result that the smaller variation of surface

levation, and hence possible better description using a linear theory
as no advantage — the results in parts (a) and (b) are quite similar in
he relative deviation of the output from convolution compared with
hat from accurate numerical simulation.

The second test was more of an examination of the ability of the con-
olution methods to handle irregularities in the upstream hydrograph
Fenton, 2019, showed that the commonly-used Muskingum method
10
for flood routing is in fact numerically-dispersive and does not handle
irregular hydrographs well). Here, a test with a relatively small flood,
a calibrating discharge maximum of two times the initial flow was
considered. In the testing case, a double-peaked hydrograph with a
maximum approximately that of the calibrating case was used. Results
are shown in Fig. 5(c) for discharge and (d) for water depth, and it
can be seen that the combination of nonlinearity and irregularity has
led to finite errors — but again, that results using discharge and depth
are very similar.

It seems that linear convolution methods might be able to be used to
describe routine river variations, as in Section 5.4, but they are not so
accurate for large floods. One could say, however, that the errors shown
in these demanding tests are no greater than those of river simulations
with unknown geometry and resistance properties, and especially those
of the diffusive Muskingum method. They are also probably less than
those of rainfall–runoff applications which cannot be tested by accurate
simulation.

6. Conclusions

Convolution equations can be used to connect the input and the
output of a system such as rainfall and runoff or inflow and outflow of
a river reach. In the past, problems of identifying the transfer function,
the link between cause and effect, have been widely reported, with
large oscillations. Here it is asserted that they are primarily due to
the fact that each equation, using a sequence of slowly-changing input
numbers, is closely similar to the next, giving a well-known condition
for ill-conditioning and hence fluctuations in the solutions. It has been

shown that a fundamental solution of such equations is that of wild
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oscillations of the transfer function, such as has often been found in
computations.

Spectral methods have been proposed here to solve the problem,
where instead of individual solution values, free to fluctuate, they
are expressed as a series of given continuous functions, where the
problem is now to determine the coefficients of those functions. Three
different forms of series were considered: Fourier, polynomials, and
piecewise continuous splines. The equations for each were found to
be well-conditioned, and solutions obtained were smooth, bounded,
and enabled a certain amount of physical interpretation, previously
confused by the erratic nature of results.

The methods have been applied to several problems. For typi-
cal rainfall–runoff ones, quite satisfactory results could be obtained.
Considering wave and flood propagation problems, good results were
obtained for comparison with a large field experimental study involving
surges downstream of a power station. Some demanding tests have been
made of the ability of the present linear methods to handle problems
of nonlinearity in flood routing, where the calibrating/identifying event
might have different size and nature from that which it is intended to
simulate. Results were not as accurate as desired. However as a first
approximation, using methods that require no knowledge of the stream
geometry or its nature, the present methods might be useful.

One incidental advantage for river problems is that the methods can
be applied to either water level (stage) or discharge hydrographs. In
particular, if the former is used, there is no need for the use of rating
curves or the effects of unsteadiness on them. Often, water level is the
most important quantity anyway.

Practical deductions and implications are:

• Spectral techniques allow automatic treatment of deconvolution
problems for arbitrarily varying input and output. The methods
are approximate but paradoxically give more useable results.

• One should use only convolution equations from a later point such
that while all values of the input sequence are used, only output
values and equations are considered such that the convolutions
do not have to be truncated by otherwise reaching back beyond
the initial point.

• The point values of the transfer function can be approximated by
relatively short series of simple continuous functions: Chebyshev
polynomials, easily expressed in terms of elementary functions,
are recommended. The number of unknowns, and computational
costs, are small. If one chooses too high a level of approxi-
mation, worse oscillatory results can be obtained, as the spec-
tral method begins to approximate the traditional point-wise
convolution form, showing what is called over-fitting in statistics.

• In considering application to flood routing problems, where there
is a delay between input and output, there are advantages in
incorporating that delay into the convolution and not requiring
output contributions until some time after input has commenced.
However that is not essential.

• No conclusions or recommendations have been made for the
length of the transfer function. That seems to be problem-specific,
and possibly has to be determined by trial and error.

• Similarly, none have been found or made for the degree of the
polynomial series, or length of the Fourier series, or number of
spline intervals. Again, regrettably, trial and error is required,
although acceptable results can be obtained with small values.

In the past, the use of convolutions and transfer functions has
ttracted a certain disfavour in practice, in view of the difficulty of
btaining reliable results from deconvolution. If that problem is solved,
t is noteworthy that they seem to be a robust and reliable means of
pproximation. In the course of this work, the author developed a new
espect for them.
11
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