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1. In lectures we had a scheme for obtaining the mean velocity in the vertical by measuring the velocity
at two points. A simpler scheme is where the velocity is measured at a single point 06 from the
surface. Show that the velocity at this point 04 (above the bottom) is a close approximation to
the mean velocity for velocity profiles in (a) & (b) by integrating to find the mean velocity, and then
finding the value of  for which the velocity is equal to the mean.

a. The Prandtl-von Kármán law for turbulent flow over a rough bed:
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You will need the result that
R
log   =  log  −  + . (Ans:  = −1 = 037, such that

the relative depth of measurement should be 063).

Here it is simpler to use a local  co-ordinate based on the bed.
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Now, let  be the point at which the velocity is equal to this, such that
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Equating the two expressions we have
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with solution log = 1, or  = −1 ≈ 037
b. The simple 17 law, sometimes used as a simpler model for turbulent velocity distributions:
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where  is the surface velocity. (Ans:  = 039relative depth 061)
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and, when  = ̄,
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and equating the two expressions gives
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c. And, do it for the general power law
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(Ans:  = (1+ )−1 . Plot it and be astonished how little it varies for 0    025. Then
take the limit as  → 0 and be astonished that it approaches the value −1 = 037, the same
as for the logarithmic law. This is a glorious coming-together of mathematics, for it is Euler’s
formula for : lim→0(1 + )1 !)

Consider the plot – there is little variation, and in practical applications the difference between
037 and 041 for the setting of a velocity meter is negligible.
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Figure 1. Variation of point where  = ̄

2. The Australian water industry uses a non-SI unit for flow, namely Megalitre per day (ML/d).

a. Verify that a cube 10m× 10m× 10m contains 1 Megalitre.

1000m3 = 1000× 1000L = 106 L = 1ML

b. It is often said that 1 Megalitre is roughly the size of a 50m Olympic swimming pool. Make
some estimates of other dimensions and test the truth of that statement.

Assume 50000m long (correct to the nearest mm – unusual for hydraulics!), say, what, 20m
wide, and 15m deep, 50× 20× 15m3 = 15ML.

c. Show that 1m3 s−1 = 864ML/d. Often, ”m3 s−1” is referred to as ”cumec”.

1m3 s−1 = 24× 3600m3d−1 = 24× 3600
1000

ML/d = 864ML/d

3. Hydrographers sometimes use a unit of velocity of km/day for calibrating their propeller meters and
presenting their data. This is not as silly as it sounds.

a. Verify that if velocities in km/day are integrated over cross sectional areas specified in m2, the
result is directly Ml/d. The velocity in km/day gives a practical idea of the distance that the
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water will travel in a day.

kmd−1 × m2 = 1000m3d−1 = 1ML/d

b. Verify that the velocity in km/day is also roughly the velocity in cm s−1, also useful for practical
considerations, and show that a velocity of 30 km/day is 347 cm s−1.

1 kmd−1 =
1× 1000× 100
24× 3600 cms−1 = 116 cms−1

30 kmd−1 =
30× 1000× 100
24× 3600 cms−1 = 347 cm s−1

4. See lecture notes

5. See lecture notes
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